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Solid-liquid transition of ultrathin lubricant film

Alexei V. Khomenko* and Olga V. Yushchenko
Physical Electronics Department, Sumy State University, 40007 Sumy, Ukraine

~Received 24 March 2003; published 12 September 2003!

We represent a melting of ultrathin lubricant film by friction between atomically flat surfaces as a result of
action of spontaneously appearing elastic field of stress shear component caused by the external supercritical
heating. The kinetics of this solid-liquid transition is described by the Maxwell-type and Voigt-Kelvin equa-
tions for viscoelastic matter as well as by the relaxation equation for temperature. We show that these equations
coincide formally with the synergetic Lorenz system, where the stress acts as the order parameter, the conju-
gate field is reduced to the elastic shear strain, and the temperature is the control parameter. Using the adiabatic
approximation we find the steady-state values of these quantities. Taking into account the deformational defect
of the shear modulus, we show that lubricant melting is realized according to mechanism of the first-order
transition. The critical temperature of the friction surfaces increases with growth of the characteristic value of
shear viscosity and decreases with growth of the shear modulus value linearly.
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I. INTRODUCTION

The interest in the problem of sliding friction is due to i
applied engineering importance@1#. One of the main goals o
studies in this field is to define the conditions for low fri
tion. In this direction experiments were carried out w
atomically flat mica surfaces separated by ultrathin layer
liquid lubricant that manifested a solid-type behavior at d
fined experimental conditions@2#. In particular, the stick-slip
~or interrupted! motion has been observed at critical yie
stress inherent in solid friction. This effect occurs when
lubricant film consists of several molecular layers and is
plained as a confinement-induced freezing. The resul
melting takes place when shear stress is above some cr
value due to ‘‘shear-induced melting’’ effect. Numeric
method studies@3,4# maintain that liquid molecular orderin
is due to wall confinement. Studies described in@5–7# were
initiated for quantitative description of experimental resu
In particular, in Ref.@7# the lubricant behavior was describe
using the order parameter determining the melting deg
On the basis of viscoelastic matter approximation a
Ginzburg-Landau equation, where order parameter defi
the shear melting and freezing, the observed phenomeno
of ultrathin fluid film in the process of friction is successful
described in Ref.@8#. Here the phase diagram is calculat
defining the domains of sliding, stick-slip, and dry friction
the plane temperature—film-thickness.

The starting point of our approach is the synergetic c
cept of phase transition@9,10#, which is the generalization o
phenomenological Landau theory. According to the latter,
phase transition is controlled by an order parameter, o
which value f a free energyF is developed in a powe
expansion@11#. The equilibrium value off is determined by
the condition

]F/]f5h, ~1!
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whereh is the external field andF is the free energy ath
50. The relaxation process of transition to equilibrium
described by the equation@12#

ḟ52
1

h S ]F

]f
2hD . ~2!

Hereh is the kinetic coefficient, which can be considered
the generalized viscosity. Iff is close to its equilibrium
value f050, we can use the linear approximation]F/]f
'f/x, wherex[]f/]h5(]2F/]f2)21 is the susceptibil-
ity. As a result, the relaxation equation~2! takes the linear
form

tḟ52f1xh, ~3!

where

t5xh ~4!

is the relaxation time.
Equations~3! and~4! were used by Landau and Khalatn

kov to study the anomalous ultrasound absorption in the
cinity of phase transition. They held the fact that here s
ceptibility x→` and supposed that viscosityh is practically
independent of temperatureT. In their theory the anoma
lously large magnitude oft is responsible for freezing pro
cess.

For viscoelastic matter the shear modulusG plays a role
of the inverse susceptibility and expression~4! assumes the
form

t5h/G. ~5!

In the cases of viscoelastic and displacement-type phase
sitions~for example, of martensite type! the modulusG goes
to zero in the vicinity of transition point and relaxation tim
~5! diverges@13,14#. There are studies~see, for example,
Ref. @15#!, using the fact that generalized susceptibility
practically independent of temperature but viscosity stron
increases with temperature at glass transition. Let us n
©2003 The American Physical Society10-1
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that anomalously large value of equilibrium coefficient~sus-
ceptibility! is typical for phase transition and anomalous
large value of kinetic coefficient is inherent in glass tran
tion.

We are aiming to take into account, along the line@8#, that
the solid-liquid transition of ultrathin lubricant film occur
due to both thermodynamic and shear melting. We obtain
unified analytical description of these processes as a resu
the self-organization caused by the positive feedback
shear stress and temperature on shear strain on the one
as well as the negative feedback of shear stress and stra
temperature on the other hand. Our approach is based o
assumption that relaxation timet→` because the shear vis
cosity diverges at the point of transition. The feature of us
the synergetic approach is that it allows us to obtain
synergetic potential, which is the analog of free energy, fr
some simple equations.

II. BASIC EQUATIONS

The main assumption of our approach is that relaxat
equation of the shear components of elastic stress tenso
has the form similar to the Landau-Khalatnikov equation~3!:

tsṡ52s1G«. ~6!

Here « is the corresponding component of strain, the fi
term on the right-hand side describes the Debye relaxa
during time ts[hs /G determined by values of effectiv
viscosityhs and shear modulusG. In the stationary caseṡ
50 the kinetic equation~6! is transformed into the Hooke
law

s5G«. ~7!

Relaxation behavior of viscoelastic matter is describ
also by the Voigt-Kelvin equation@16#

«̇52«/t«1s/h, ~8!

wheret« is the relaxation time of matter strain andh is the
shear viscosity coefficient. The second term on the rig
hand side describes the flow of a viscous liquid caused by
shear components of the elastic stress. In the stationary
«̇50 we obtain the Hooke-type expressions5G««. It is
worth noting that effective values of viscosityhs[tsG and
modulusG«[h/t« do not coincide with the real valuesh
and G. The formal reason for this difference is that th
Maxwell-type equation~6! does not reduce to the Voigt
Kelvin equation~8! @17#. It is very important for our consid-
eration that the valuesG« , G, hs depend on temperatureT
very weakly, while the real viscosityh diverges, if the tem-
perature decreases to pointTc @15#. Further, we will use the
simplest approximate temperature dependenc
G«(T), G(T),hs(T)5const,

h5
h0

T/Tc21
, ~9!

whereh0[h(T52Tc) is the typical value of viscosity.
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According to synergetic ideology@9,10# for completing
the equation system~6! and ~8!, which contain the order
parameters, the conjugate field«, and the control paramete
T, it is necessary to add a kinetic equation for the tempe
ture. This equation can be obtained using the basic equat
of elasticity theory stated in Ref.@17#. Thus, we should star
from the equation connecting the time derivatives of entro
S and internal energyU with equilibrium stresss0,

T
dS

dt
5

dU

dt
2s0

d«

dt
~10!

~in equilibrium, the heat variation isdQ5TdS). In nonequi-
librium case of nonuniform medium heating this equati
has the form

2div q5
dU

dt
2s

d«

dt
. ~11!

Here the heat current is given by the Onsager equation

q52k“ T, ~12!

wherek is the heat conductivity constant, and the total str
s5s01s8 includes the viscous parts8. Deducting Eq.~11!
from Eq. ~10!, taking into account the equality

dS

dt
5

]S

]US ]U

]T D
«

dT

dt
1

]S

]U

]U

]«

d«

dt
1S ]S

]« D
U

d«

dt

5
rcv

T

dT

dt
1

1

T

]U

]«

d«

dt
2

s0

T

d«

dt
, ~13!

and supposing that a layer of lubricant and atomically
mica surfaces have different temperaturesT andTe , respec-
tively, we obtain

rcvṪ5
k

l
~Te2T!1s8«̇1T

]s0

]T
«̇. ~14!

Here the equalities (k/ l )(Te2T)'2div q and ]U/]«5s0
2T]s0 /]T are used,l is the scale of heat conductivity,r is
the mass density, andcv is the specific heat capacity. Th
first term on the right-hand side of Eq.~14! describes the
heat transfer from the layer of lubricant to friction surface
The second term takes into account the effect of the diss
tive heating of a viscous liquid flowing under the action
the stress@18#. The third term represents the heat source t
is conditioned by the reversible mechanic-and-caloric eff
for which in linear approximationT(]s0 /]T) «̇'s0«̇. As a
result, the equation of heat conductivity can be written in
form

rcvṪ5
k

l
~Te2T!1s«̇. ~15!

It is convenient to introduce the following measure uni

ss5~rcyh0Tc /tT!1/2, «s51, Tc , ~16!
0-2
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for variabless, «, T, respectively (tT[r lcy /k is the time
of heat conductivity!. Then, substituting in Eq.~15! the ex-
pression for the«̇ from Eq. ~8!, the basic equations~6!, ~8!,
and ~15! take the form

tsṡ52s1~g/u0!«, ~17!

t««̇52«1u0~T21!s, ~18!

tTṪ5~Te2T!2s«/u01s2, ~19!

where we introduce the constants

g5
G

G0
, G0[

h0

t«
;

u05
ss

G0
[S t«

tT
D 1/2S rcyTct«

h0
D 1/2

. ~20!

It is easy to see that Eqs.~17!–~19! have the form similar to
the Lorenz system@9,10#.

III. CONDITIONS OF TRANSITION

For qualitative analysis of this system let us use the a
batic approximation, when the characteristic time scales
submitted to the following inequalities:

t«!ts , tT!ts . ~21!

They mean that in the course of medium evolution
strain«(t) and the temperatureT(t) follow the change of the
stresss(t). The first of these conditions compares the m
roscopic timets and microscopic Debye timet«;10212 s,
so it is satisfied always. Using the definitions of the therm
metric conductivityx[k/cv , the effective kinematic viscos
ity ns[hs /r, and the sound velocityc[(G/r)1/2, it is con-
venient to give to the second condition~21! the form

l !L, ~22!

according to which the characteristic length of heat cond
tivity should not to exceed the value

L5
xns

rc2 . ~23!

Then, we can set the left-hand sides of Eqs.~18! and~19! to
be equal to zero. As a result, the dependencies of the stra«
and the temperatureT on the stresss read

u0
21«5s2~22Te!

s

11s2
, ~24!

T5Te1~22Te!
s2

11s2
. ~25!

According to Eq.~24!, at Te,1 the« vs s dependence ac
quires a minimum ats5s1 , defined by the equality
03611
-
re

e

-

-

-

s75
1

2
@~Te24!7A~Te22!~Te210!#1/2, ~26!

and then increases monotonically@19#. When Te.1 the
strain « increases with stresss linearly at Hook domains
!1. For values ofTe in the ~1, 10! interval, the« vs s
dependence has a monotonically increasing shape with
minimum at points50. At Te510 a plateau appears, whic
for Te.10 is transformed into a maximum and a minimu
corresponding to the stressess2 ands1 , respectively. The
temperatureT at Te,2 increases with stresss from the tem-
peratureTe at s50 to the horizontal asymptoteT52, and at
Te.2 control parameter decreases from the maximum va
Te at s50 to the same asymptoteT52. Obviously, this
decrease is caused by the negative feedback of the stres
and the strain« on the temperatureT in Eq. ~19!, which is
the reflection of Le Chatelier principle for the examine
problem. On the other hand, the positive feedback of
stresss and the temperatureT on the strain« in Eq. ~18! is
the reason for melting that leads to the growth of« due to
solid phase instability. However, in accordance with E
~19!, the latter results in decrease ofT as a consequence o
self-organization process.

The pointed out positive feedback ofs and T on « im-
plies that the transition of lubricant from solid to fluid state
induced both by heating and under influence of stress ge
ated by solid surfaces at friction. This agrees with exami
tion of solid state instability within the framework of she
and dynamic disorder-driven melting representation in
sence of thermal fluctuations@8#.

The insertion of Eq.~24! into Eq. ~17! gives the Landau-
Khalatnikov-type equation

tsṡ52]V/]s, ~27!

where the synergetic potential reads

V5
1

2
~12g!s21gS 12

Te

2 D ln~11s2!. ~28!

At steady state the conditionṡ50 is realized and potentia
~28! assumes a minimum. If the temperatureTe is smaller
than the critical value

Tc511g21; g[G/G0,1, G0[h0 /t« , ~29!

this minimum corresponds to the stresss50, so that the
melting cannot take place and the solid state is realized
the opposite caseTe.Tc , the stationary shear stress has t
nonzero value

s05S gTe2~g11!

12g D 1/2

, ~30!

increasing withTe growth according to the root law. Thi
causes the melting of film and its transition into fluid state.
accordance with Eqs.~24! and ~25!, the corresponding sta
tionary values of melting strain and temperature are as
lows:
0-3
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«05~ss /G!s0 , T0511g21. ~31!

It is interesting that, on the one hand, the melting tempe
ture T0 coincides with critical value~29! and, on the other
hand, its value differs from the temperatureTe . The latter
circumstance takes place due to the fact at steady state
first equation ~31! is realized instead of connections0
5«0 /u0. SinceTc is the minimum value of temperature
which a solid-liquid transition begins, the above means t
the negative feedback of the elastic stresss and the strain«
on the temperatureT @see third term on the right-hand side
Eq. ~19!# reduces the film’s temperature so much that only
the limit does it ensure the self-organization process.
steady state the melting value of shear viscosity coefficien

hm5h0g. ~32!

There are two opposite situations depending on the
rameterg5G/G0 value. In the caseg@1, this is realized for
small value of the viscosity coefficienth0, and Eqs.~29!–
~31! take the form

s05~12Te!
1/2, T05Tc51. ~33!

Such situation corresponds to the limit of strongly visco
liquid. In the opposite caseg!1 ~large viscosity coefficient
h0) we have, instead of Eq.~33!, the solid~fragile! limit,

s05~gTe21!1/2, T05Tc5g21[h0 /t«G. ~34!

IV. INFLUENCE OF DEFORMATIONAL DEFECT
OF MODULUS

The Maxwell equation~6! assumes the use of the idea
ized Genki model. For the dependences(«) of the stress on
the strain, this model is represented by the Hooke expres
s5G« at «,«m and the constantsm5G«m at «>«m @sm ,
«m are the maximal stress and strain,s.sm leads to viscous
flow with the deformation rate«̇5(s2sm)/h]. Actually, the
dependences(«) curve has two regions: first one, Hookea
has the large slope fixed by the shear modulusG, and it is
followed by the more gently sloping section of the plas
deformation whose tilt is defined by the hardening factorQ
,G. Obviously, the above picture means that the sh
modulus, introduced~in terms of the relaxation timets) in
Eq. ~6!, depends on the stress value. We use the simp
approximation

G~s!5Q1
G2Q

11s/sp
, ~35!

which describes the above represented transition of the e
tic deformation mode to the plastic one. It takes place
characteristic value of the stresssp , which does not exceed
the valuess ~in other case the plastic mode is not ma
fested!. As a result, the relaxation timets obtains the depen
dence on the stress value:

1

ts~s!
5

1

tp
S 11

u2121

11s/sp
D , ~36!
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where the relaxation time is introduced for the plastic flo
mode@cf. Eq. ~5!#,

tp5hs /Q, ~37!

and the quantity

u5Q/G,1 ~38!

is the parameter describing the ratio of the tilts for the def
mation curve on the plastic and the Hookean domains. N
that the expression of the type Eq.~36! was offered, for the
first time, by Haken@9# for the description of the rigid mode
of the laser radiation. We used it@10# for the description of
the first-order phase transition kinetics, however, Eq.~36!
had contained the square of the ratios/sp ~so theV vs s
dependence had the even form in Ref.@10#!. In description of
the structural phase transitions of a liquid the third-order
variants, breaking the specified parity, is present@11#. There-
fore in approximation~36! we used the linear terms/sp ,
instead of the square one (s/sp)2. It is apparent that in the
following, dependence~39! is not already even.

Within the adiabatic approximation~21! the system of the
Lorenz equations~17!–~19!, where instead of thets it is
necessary to use dependencets(s), is reduced to, as well a
above of, the Landau-Khalatnikov equation~27! with tp in-
stead ofts . However, in the synergetic potential~28! the
factor g5G/G0 is replaced bygQ5G2/G0Q,1, which is
formally supposed to be not dependent ons, and the odd
term appears proportional tou2121:

V5
1

2
~12gQ!s21gQS 12

Te

2 D ln~11s2!1a2~u2121!

3S s

a
2 lnU11

s

aU D . ~39!

Here the constanta[sp /ss is introduced. At small value of
temperatureTe dependence Eq.~39! has a monotonically in-
creasing shape with its minimum at points50 correspond-
ing to steady state of a solid. As it is seen from Fig. 1
values

FIG. 1. The dependence of the synergetic potential on the ela
stress at various temperatures:~curve 1! Te,Tc

0 , ~curve 2! Te

5Tc
0 , ~curve 3! Tc

0,Te,Tc , and~curve 4! Te>Tc .
0-4
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Tc
0511~gQ

2121!~2Ap/3 ctg~2d!1r /3!;

tgd5tg1/3~b/2!~ udu<p/4!, tgb5
2

q
AS p

3D 3

~ ubu<p/2!,

p5s2
r 2

3
, q5

2r 3

33 2
rs

3
1t,

r 533S 1

32~12gQ!
1

a2

222
g2

22333 2
ga

233D , g5
a~u212gQ!

12gQ
,

s533F 1

~12gQ!S 1

32~12gQ!
1

a2u21

2
2

g2

2333 2
gau21

233
2

ga

233D1
g3a

33 G ,
t533F 1

~12gQ!2 S 1

33~12gQ!
1

a2u22

22
2

g2

2233 2
gau21

233 D 1
g3au21

33~12gQ!
G , ~40!
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a plateau appears, which forTe.Tc
0 is transformed into a

minimum meeting the stresss0Þ0 and a maximumsm that
separates minima corresponding to the valuess50 ands
5s0. With further growth of the temperatureTe the ‘‘or-
dered’’ phase minimum, corresponding to a fluid states
5s0, grows deeper, and the height of the interphase ba
decreases, vanishing at the critical valueTc511g21 ~29!.
The steady-state values of the stress in a fluid state have
form ~see Figs. 1 and 2!

s052e cosS w

3 D2
g

3
, ~41!

sm52ecosS w

3
2

2p

3 D2
g

3
;

e[~2c/3!1/2, cosw[2v/2e3,

c5z2
g2

3
, v5

2g3

33 2
gz

3
1j,

FIG. 2. The dependence of the steady-state values of the s
on the temperatureTe at gQ50.2, u50.4, anda50.5 ~the solid
curve corresponds to the steady-state values0, the dashed curve
meets the unstable one,sm).
03611
er
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g5
a~u212gQ!

12gQ
, z5

11gQ~12Te!

12gQ
,

j5
a@u211gQ~12Te!#

12gQ
. ~42!

At Te>Tc the dependenceV(s) has the same character as
the absence of the modulus defect~see curve 4 in Fig. 1!.

The specified peculiarities corresponds to the posit
stress valuess. On the negative half-axis atTe.Tc , with
the increase ofusu a very weak minimum of theV vs s
dependence is observed, which is followed by the infin
increase of the potentialV at s52sp . Thus, for the nega-
tive values of the elastic fieldss,« are not realized practi-
cally.

The characteristic circumstance of our scheme is that
ergy barrier inherent in the synergetic first-order transition
displayed only in the presence of the deformational defec
the modulus. Since latter takes place always, it follows tha
studied solid-liquid transition represents synergetic fir
order transition. The examined situation is much more co
plex than usual phase transitions. Really, in the latter case
steady-state value of the system’s temperatureT0 is reduced
to the valueTe fixed by thermostat. In our caseT0 is reduced
to the critical valueTc for the synergetic second-order tra
sition that has a place in the absence of the modulus de
~see Sec. III!. When we take into account the modulus d
fect, the temperature

T05Te1~22Te!
s0

2

11s0
2

~43!

is realized, whose value is defined by a minimum position
the dependence~39!. According to Eqs.~41! and ~43!, the
quantityT0 smoothly decreases from the value

ss
0-5
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Tm5Tc
01~22Tc

0!
~s0

c!2

11~s0
c!2

,

s0
c5F 1

31/2S g2

3
2

11gQ~12Tc
0!

12gQ
D 1/2

2
g

3G 2

~44!

at Te5Tc
0 , to Tc0[11gQ

21 at Te→`. Referring to Fig. 3,
the stationary temperatureT0 shows a linear increase from
to Tc , with Te being in the same interval and, after the jum
down atTe5Tc , the magnitudeT0 smoothly decays. If the
temperatureTe then decreases, the stationary temperatureT0

grows. When the pointTc
0 @Eq. ~40!# is reached,T0 under-

goes the jump fromTm @Eq. ~44!# up to Tc
0 . For Te,Tc

0 ,
again stationary temperatureT0 does not differ fromTe .

FIG. 3. The dependence of the steady-state value of the sy
temperatureT0 on the temperatureTe (gQ50.2, u50.4, anda
50.5).
-

B

se
n

03611
Since the stationary values of stresss0.0 are realized
only at Te.11gQ

21 , gQ,1, the range of valuesTc
0.2 is

important for consideration. In this interval the maximu
system’s temperature~44! is lower than the minimum tem
perature of friction surfaces~40!, and as it is visible from
Fig. 3, atTe.Tc

0 the stationary temperatureT0 of the film is
always lower than valueTe .

V. SUMMARY

The above analysis is based on the assumption that a
bricant melting process is caused by the self-organization
the shear components of the stress and the strain el
fields, on the one hand, and the lubricant temperature, on
other hand. Thus, the stresss acts as the order parameter, th
conjugate field is reduced to the elastic strain«, and the
temperatureT is the control parameter. The initial reason f
self-organization is the positive feedback ofT and s on «
@see Eq.~18!#. According to Eqs.~8! and~9!, it is caused by
the temperature dependence of the shear viscosity leadin
its divergence. Accounting for the deformational defect
the shear modulus, we obtain the expressions for temp
tures corresponding to absolute instability of overcooled
uid Tc

0 @Eq. ~40!# and stability limit of the solid stateTc @Eq.
~29!#. The real thermodynamic melting temperature is in t
(Tc

0 ,Tc) interval and can be found from the equality cond
tion of potentials of solid and liquid phases,V(0)5V(s0). It
is seen from Eq.~29! that systems predisposed to meltin
have large shear modulusG and small characteristic value o
shear viscosityh0.

The kinetics of a considered transition is determined
the Landau-Khalatnikov equation~27!, wherets is replaced
by tp5hs /Q and the synergetic potential has the form~39!
inherent in the first-order transition. In supercooled liqu
with hs5` the freezing of system can takes place (ṡ→0)
even in the nonstationary state]V/]sÞ0.
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